Curvilinear element of the discontinuous Galerkin method designed to capture the labyrinth seal geometry exactly
نویسندگان
چکیده
The present study applies the discontinuous Galerkin finite element method to a numerical simulation of compressible fluid flow through labyrinth seal. This paper is proposes curvilinear hexahedral element, which deformed in such way that it matches rotated walls seal exactly. A performed on staggered with two teeth rotor and one tooth stator. For simulation, three computational meshes different refinement are considered. All simulations for both stationary rotating at 50 Hz. obtained results compared computed by commercial CFD software Ansys Fluent.
منابع مشابه
Implementation of the Continuous-Discontinuous Galerkin Finite Element Method
For the stationary advection-diffusion problem the standard continuous Galerkin method is unstable without some additional control on the mesh or method. The interior penalty discontinuous Galerkin method is stable but at the expense of an increased number of degrees of freedom. The hybrid method proposed in [5] combines the computational complexity of the continuous method with the stability o...
متن کاملDiscontinuous Galerkin Finite Element Method for the Wave Equation
The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...
متن کاملThe local discontinuous Galerkin finite element method for Burger's equation
In this paper, we study the local discontinuous Galerkin (LDG) finite element method for solving a nonlinear Burger’s equation with Dirichlet boundary conditions. Based on the Hopf–Cole transformation, we transform the original problem into a linear heat equation with Neumann boundary conditions. The heat equation is then solved by the LDG finite element method with special chosen numerical flu...
متن کاملMixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
In this paper, we first split the biharmonic equation !2u = f with nonhomogeneous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v = !u and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation vh of v can easily be eliminated to reduce the discrete problem to a Schur complement sys...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Mechanics
سال: 2022
ISSN: ['1802-680X', '2336-1182']
DOI: https://doi.org/10.24132/acm.2022.732